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ABSTRACT

This paper describes dynamic trade-off evaluation (DTE), a new technique that has been
developed to improve the performance of real-time problem solving systems. The DTE technique
is most suitable for environments in which the requirement for meeting time constraints is of
equal or greater importance to that of providing optimally intelligent solutions. In such environ-
ments, the demands of high input data volumes and short response times can rapidly overwhelm
traditional AI systems. DTE is based on the recognition that in time-constrained environments,
compromises to optimal problem solving (in favor of timeliness) must often be made in the form
of trade-offs. DTE combines knowledge-based techniques with decision theory to 1 ) dynamically
modify system behavior and 2) adapt the decision criteria that determine how such modifications
are made. The performance of DTE has been evaluated in the context of real-time trade-offs in
spacecraft monitoring problems. One such application has demonstrated that DTE can be used to
dynamically vary the data that is monitored, making it possible to detect and correctly analyze all
anomalous data by examining only an appropriate subset of the total input data. DTE is shown
to enhance real-time performance in both conventional and intelligent automation tasks. In care-
fully structured experimental evaluations that use real spacecraft data and real decision making,
DTE provides the ability to handle a three-fold increase in input data (in real-time) with out loss
of performance. Such capability makes knowledge-based approaches (which have not typically
been been good choices for programming time-constrained applications) more broadly applica-
ble: the knowledge-based techniques in DTE are effective in complex real-time environments and
can actually enhance the performance of conventional software.
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1.0 Introduction

The greatest challenge to complex systems monitoring is in the area of real-time AI. While
speed is relevant to the quest for real-time performance, it is generally agreed that fast systems do
not necessarily qualify as real-time systems, The concept of real-time implies timely response
under varying input data volumes and under unexpected situations. Real-time systems have
therefore been defined as systems in which “there is a strict time limit by which the system must
have produced a response to environmental stimuli” [0’Reilly  1985]. According to such defini-
tions, real-time systems must be able to flexibly, reliably, and predictably respond to input data,
independent of changes in the rate at which it is arriving. Inherent in this requirement is the need
for real-time systems to recognize situations in which optimal problem solving is incompatible
with time constraints and respond to these situations by making concessions to optimality with
minimum impact on problem solving integrity. One way for intelligent systems to achieve these
capabilities is by monitoring aspects of their own performance and, when necessary, evaluating
and implementingaeg relevant trade-offs.

As a result, new methods are being sought out for run-time modification of problem solving
strategies. These methods aim to provide accurate responses in the presence of time constraints
and conflicting objectives [Russell and Wefald 1989], [Horvitz 1988a]. Each of these approaches
recognizes the need to make implicit trade-offs and compromises that favor timeliness over op-
timality,  but each has certain limitations for the dynamic real-time environments faced in
applications like spacecraft data monitoring. Russell’s approach for metareasoning in game play-
ing applications is characterized by the fact that each step of the reasoning process depends on a
preceding metareasoning analysis step. However, for many systems it may more appropriate to
perform metareasoning only when necessary rather than at every step, particularly when the
metareasoning is not time-constrained. Horvitz uses utility analysis to determine the value of a
computation prior to deciding whether to initiate that computation or to begin an action. This
approach determines the benefit of continuing to refine the solution to a problem, and is a type of
incremental (or “anytime”) algorithm [Dean 1990]. In severely time-constrained situations, it
may be more beneficial to vary the solution strategy according to the dynamics of the environ-
ment than to terminate a fixed strategy when dictated by the environment. As a result, these
approaches are not ideally suited for complex real-time environments.

Real-time reasoning research has also begun to address specific the issue of trade-offs. For ex-
ample, research in intelligent data management [Washington and Hayes-Roth 1989] [Hayes-Roth
1990] combines sampling (processing one data point per fixed time interval) and thresholding
(processing data points that exceed dynamic threshold levels) to produce a dynamic filtering
approach that effectively trades the amount of input data processed for improved timeliness of
solution. The specific focus of this technique is on data types that are governed by a set of thresh-
olds or performance specifications.

These approaches are among the first attempts to study simultaneous consideration of time pres-
sure, complex environments, and conflicting objectives. In addition, studies of time-constrained
rational agents have begun to emerge in the literature [IYAmbrosio 1990], [Hansson and Mayer
1990]. However, most of these studies rely upon assumptions that are not universally applicable.
Game-playing and medical diagnosis, for example, are self-contained domains with (relatively)
long time lapses between stimulus and response. Many interesting domains such as spacecraft
monitoring are neither self-contained nor free of time constraints. As a result, new methods are
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needed for complex, highly dynamic applications. Towards this end, a combination of AI and
decision theory is proposed.

This paper describes Dynamic Trade-off Evaluation (DTE), a new approach to the real-time rea-
soning problem that combines decision theory and knowledge-based techniques to automatically
determine when trade-offs become necessary and how to implement them with minimal impact
on solution quality. DTE offers a general methodology for explicitly making a variety of trade-
offs (including the input data management trade-off). This methodology provides the ability to
perform metareasoning only when necessary and to dynamically modify the solution strategy
based on both the dynamics of the environment and the changing goals of the monitored system.

2.0 Metareasoning with Dynamic Trade-off Evaluation
The applicability of decision theory and the psychology of judgement to the general prob-

lem area now known as metareasoning was recognized early, with research on heuristic methods
for controlling inference [Simon 1955]. However, initial enthusiasm for using decision theory as
an artificial intelligence technique dwindled in favor of other approaches that seemed to lend
themselves more naturally to expressing the rich structure of human knowledge [Horvitz et al.
1988b].

Recently, there has been renewed interest in decision theory for real-time AI applications. Rap-
idly changing circumstances may involve trade-offs and judgemcnts,  two processes which can
entail a substantial level of subjectivity [von Winterfeldt and Edwards 1986]. Decision theory of-
fers straightforward mechanisms for incorporating subjective evaluations. These mechanisms are
embodied in formal decision theoretic principles for obtaining preferred courses of action in the
presence of uncertain events and conflicting objectives.

A variety of decision-theoretic techniques exist in multi-attribute utility theory that enable
straightforward methods for evaluating competing objectives. However, only three variants of
these have been commonly applied to real-world situations [von Winterfeldt and Edwards 1986]:
the simple, multi-attribute rating technique [Edwards 1977], difference value measurement [Dyer
and Sarin 1979], and subjectively expected utility (SEU) measurement [Keeney and Sicherman
1976]. These techniques are based on general procedures in which a set of possible alternative
actions are evaluated with respect to some set of criteria to produce a utility vector. Associated
with each action there may be a set of possible outcomes, each of which has some probability of
occurrence. The probability and utility vectors can then be combined to produce a value that
represents the subjectively expected utility of each action. A decision is made by selecting the
action with the maximum utility.

Of the three multi-attribute utility techniques that are commonly applied to real-world problems,
the Edwards technique is the simplest computationally,  because it uses additive (rather than
multiplicative) utility and aggregation models. Furthermore, it relies on direct rating and ratio
estimation (rather than probability methods) for determining utilities and weighting factors. As
a result, the Edwards technique involves only the calculation of a simple dot-product for each
alternative under evaluation. More computationally  intensive methods can require the calcula-
tion of numerous complex terms in addition to the dot product, for purposes such as evaluating
interdependencies among evaluation criteria. However, for many practical applications, the re-
sults of the simpler technique are theoretically and behaviorally comparable with the other
methods [von Winterfeldt and Edwards 1986].
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This section describes a static procedure for decision making in the presence of multiple objec-
tives that is based on the Edwards utility analysis method. It also introduces an approach for
automating this method and using it to perform metareasoning in dynamic real-time systems.
The simplicity of the Edwards technique offers a significant advantage for real-time application,
particularly for problem domains in which it is frequently invoked [Feldman and Sproull 1977].

2.1 Utility Analysis for One-time Multi-attribute Decision Making

Utility analysis methods that are used to make decisions using the principles of multi-
attribute utility theory share a common set of procedures for reducing complex evaluation tasks
to composites of single attribute decisions. According to these procedures, each single attribute
decision is assigned some importance (weight) in the overall decision process. In general, the
procedures include the following steps [von Winterfeldt and Edwards 1986]:

1.

2.

3.
4!

5.

Definition of application specific alternatives and the criteria that determine the value
of these alternatives
Separate evaluation of each alternative with regard to each individual attribute
(using the specified criteria)
Assignment of relative weights to the attributes
Aggregation of the single attribute evaluations of alternatives and the attribute
weights into an overall evaluation of alternatives
Selecting and acting upon the alternative with the maximum value.

The Edwards utility analysis procedure includes straightforward techniques for determining
single attribute values, obtaining weighting factors, and forming aggregation models. Single at-
tribute values are derived with direct rating, which is one of the most important and most widely
used numerical estimation method for performing value measurement [von Winterfeldt  and Ed-
wards 1986]. Firstf all the alternatives pertaining to a particular situation are specified. Then
direct rating is used to rank the alternatives within the specified set: the best and worst possible
alternatives are selected from the set and given respective values of 100 and O on a rating scale.
The remaining alternatives are ranked at appropriate intervals on the scale so that their positions
accurately reflect their perceived value in the subjective judgement of the decision maker(s). The
ratio estimation method [Torgenson 1958], [Baird and Noms 1978] is then used to determine the
weights that signify the importance of the various alternatives. The weighting scheme provides a
representation of the relative importance of the individual attributes to the overall evaluation
process. The results of this step again reflect the individual perception of the decision maker(s).

Finally, an additive aggregation model is used to define the overall value of an alternative by
summing over the various attributes such that

?1
‘U(X) = Z 7Uj VI (Xj)

j= 1

In this equation, x is the alternative under evaluation, ~i(xi) is the value of alternative x with
respect to the ith attribute, ~i reflects the importance of the ith attribute, and v(x) is the overall
aggregate value of alternative x. Using this equation, the various alternatives are evaluated and
the one with the greatest aggregate value is selected as the best alternative, according to the most
accurate information available at the time the decision is made.
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2.2 The Applicability of Utility Analysis to Static Trade-off Evaluation

The utility analysis methods put forth in the general context of multi-attribute utility the-
ory have been studied with respect to one-time decision making and have been applied to such
diverse problem areas as selecting real-estate sites [Edwards and Newman 1982] and evaluating
coastal development proposals [Gardiner 1974]. Both of these applications are characterized by
numerous competing evaluation criteria. Reaching a decision in such applications is a one-time
process that relies on utility analysis to evaluate, weight, and aggregate. The decision reflects
trade-offs on the pertinent, competing objectives according to the selected weighting factors and
incorporates judgement  of the decision makers. However, implicit in the procedure is the as-
sumption that the criteria and objectives which formed the basis .of the evaluation process will
remain valid after a decision has been made, because the decision should not be remade: once
selected, a real-estate site or a coastal development proposal should remain appropriate for a
suitably long period of time to come, In this type of decision, it is appropriate that the decision
criteria, weighting factors, and final evaluation are static in nature.

3.0 Dynamic Trade-off Evaluation for Real-time Problem
Solving Systems
In the case of real-time problem solving systems, trade-offs must be made dynamically

and continually: a static, one-time decision will not reflect changing circumstances in the appli-
cation environment. Further, if the application is characterized by changing circumstances, then
domain knowledge and judgments may need to be combined with multi-attribute utility theory
to enable revision of the decision criteria.

An extension of utility analysis is introduced in this paper as a new approach for real-time deci-
sion making that enables dynamic evaluation of real-time trade-offs and maintains the
advantages of simplicity, robustness, and flexibility associated with the static method. The new
approach is termed Dynamic Trade-off Evaluation (DTE). In DIE, utility analysis is used to rank
alternatives in a preference space. Domain knowledge provides decision rules used at run time to
1) dynamically re-weight  decision criteria and 2) dynamically select among alternatives in a
preference space based on situational attributes and operational modes. DTE is sufficiently gen-
eral for application to a variety of run-time trade-offs and for integration into a real-time
monitoring architecture.

The DTE procedure consists of six steps, some of which are dynamic parallels of steps in the
utility analysis procedure. The first three of these steps and part of the fourth must be completed
during the design phase of the system; the rest of the steps take place in real-time. The procedure
includes:

1. Definition of the trade-off instantiation mechanism. This step involves specif ying the
circumstances under which DTE is required and designing the mechanism that will
detect those circumstances and invoke the trade-off evaluation.

2. Definition of application-specific alternatives and the attributes or criteria that de-
termine the value of the alternatives. During this step, the alternative actions that are
to be considered in the trade-off evaluation are specified, along with criteria that will
be used to evaluate the alternatives. As part of this process, the system designers and
domain experts also specify domain knowledge and (if necessary) heuristics that
define the various ways of implementing each alternative. In addition, the decision
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4.

5.

6.

5.0
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criteria that influence the specific implementation of a run-time alternative are
considered,

Separate evaluation of each alternative, This is done in conjunction with the previous
step, and involves reliance on subjective judgments in cases where no basis for ob-
jective evaluation exists. Each alternative is ranked with respect to each of the
evaluation criteria, on a scale of O to 100, and suitable consistency checks are applied
to the evaluation,

Definition of weights and modes. Relative weights are assigned to each of the crite-
ria, along with ranges within which the weights can vary. Domain knowledge is
specified to determine the circumstances under which the weights will be varied. In
addition, multiple modes may be specified, where each mode is governed by a dif-
ferent set of weights. Both the variation of the weights and the choice of a mode are
determined at run time using domain knowledge. These decisions are based on
events in the monitored environment.

Aggregation. The weights selected in the previous step are used to determine the
aggregate value of each of the alternatives, using an additive aggregation model.
These aggregate values provide the evaluation of the alternatives with regard to one
of the trade-off axes. Depending on the specific trade-off, similar evaluation and
aggregation may be required with regard to the second trade-off axis.

Selection. An alternative is selected, based on the upper-right-hand-corner criterion
specified in static utility analysis methods. When the evaluation indicates that two or
more alternatives are equally good, domain knowledge is used to select one alter-
native over the others, or if the alternatives are not mutually exclusive, to select
several of them.

Applications of Dynamic Trade-off Evaluation
This section describes how dynamic trade-off techniques are applied, using as examples

two specific real-world problems in the domain of spacecraft monitoring. The first trade-off that
is examined is a timeliness trade-off; specifically, representativeness of the input data vs. tin~eli-
ness of the solution. This trade-off is examined in the context of spacecraft Solid State Imaging.

A second trade-off that is explored pertains to problem solving strategy. This trade-off weighs
focus on a specific problem solving task against general responsiveness to other more important
tasks that may arise. The focus vs. responsiveness problem is studied in the domain of Voyager
mission system-level analysis. Anomaly analysis at the system level is particularly challenging
because it involves coordination of multiple subsystem knowledge base activities. The focus vs.
responsiveness trade-off is highly relevant to this problem, particularly because anomalies have
been historically categorized with different levels of criticality: focus on resolving low criticality
anomalies cannot preclude the detection of subsequent higher level anomalies.

5.1 A Representativeness vs. Timeliness Trade-off
The Solid State Imaging (SS1) Subsystem on newer spacecraft has the capability for much

faster image frame times than the technology used on previous missions. Readout rates can be as fast
as one image every two seconds (compared to one every 96 seconds previously). This high data vol-
ume is particularly noteworthy because imaging data will be returned continuous y over multiple



year missions. Associated with each image are numerous engineering parameters that indicate camera
status. Examples of this engineering information include dynamic data pertaining to exposure time,

filter position, gain state, readout mode, and data compression mode. In addition, there are non-
dynamic parameters that indicate general instrument stat&, voltages and currents.

While non-dynamic parameters could be managed with an extension of the dynamic threshold-
ing technique [Washington and Hayes-Roth 1989], the remaining engineering information does
not follow trends and therefore is not well-suited to this approach. This is because the
“correctness” of a data value is independent of the correctness of previous values: a value that
was correct at one moment can, without changing, become incorrect at the next moment, de-
pending on subsystem goals. For example, exposure times vary with the goals of the subsystem.
YVhen goals change, new exposure times maybe required; if the data related to these parameters
does not change, system goals will not be achieved. As a result, intelligent management of more
complex data requires the application of knowledge-based techniques that incorporate an aware-
ness of the dynamic goals of the monitored system. The large amount of data, the dependence on
heuristics, and the complexity of tasks make this an ideal problem for demonstrating dynamic
trade-off evaluation.

The basic real-time mission operations task for this subsystem involves comparison of incoming
engineering telemetry to a combination of predicted data values or accepted limit ranges, The
specific predictions reflect subsystem goals for the planned sequence of system events and the
limit ranges reflect the general operating parameters of the instrument. This task involves two AI
components in addition to the conventional automation tasks of predicted-to-actual comparison
and user-friendly displays and interfaces. The AI components include intelligent data manage-
ment and anomaly analysis; the latter capability has been addressed previously [Schwuttke et al.
1991] and will not be addressed here.

The (competing) goals of intelligent data management in this application are to dynamically ad-
just input data volumes to meet processing capabilities while maximizing the resulting
information content, maintaining alertness to unusual events in the input data, and focusing on
particularly relevant tasks. The DTE procedure is invoked by a software module that analyzes the
size of the input backlog, and is applied to this trade-off as described in the remainder of this
section. The overall system architecture that provides this capability is shown in Figure 1.

In this architecture, telemetry data is passed through a parameter selector that has the ability to
filter desired telemetry channels. If a backlog builds up during either normal monitoring or
anomaly detection, the backlog detection module triggers DTE to re-evaluate the channel selec-
tion policy. DTE re-evaluation  is done on the basis of both preselected alternatives and heuristic
rewei.ghting.  The reweighing decisions are governed by the current monitoring circumstances
and by the mode of operation: monitoring or anomaly detection.

For the solid state imaging application four possible data management alternatives have been
specified as a result of extensive interviews with the imaging subsystem specialist. These alter-
natives are 1.1) eliminating parameters not in the basic monitoring set, 1.2) eliminating
parameters not in the minimal set, 2.1) reducing sampling rate on heuristically defined subset of
parameters, and 2.2) reducing sampling rate on the entire parameter set. The converse set of
alternatives applies when data rates or computational loads from other processes decrease. These
converse alternatives include 1.1) adding parameters in the full monitoring set, 2) adding pa-
rameters in the basic set, 3) increasing sampling rate on a heuristically defined parameter subset,
and 4) increasing sampling rate on the entire parameter set.

The four alternatives are evaluated with regard to criteria that define representativeness. For data
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Figure 1. DTE incorporated into a monitoring and diagnosis architecture.

reduction, these include: (A) non-dynamic behavior, @) irrelevance to an existing problem area,
and (C) non-negative impact on monitoring integrity. A data parameter must exhibit non-
dynamic behavior before it can be eliminated; frequent parameter value changes indicate a high
level of activity that must be monitored to maintain adequate representativeness. When repre-
sentativeness is an issue, irrelevance to existing problem areas is important in deciding which
parameters to remove from the monitored set. Finally, only parameters that do not compromise
monitoring integrity in current circumstances can be eliminated without impacting
representativeness. Conversely, when the size of the monitoring set is being increased, the crite-
ria become (A) dynamic behavior, (B) relevance to an existing problem area, and (C) positive
impact on monitoring integrity.

The second step also requires the specification of domain knowledge that shows how to imple-
ment the alternatives. In SS1, the parameter elimination alternatives and the second sampling rate
alternative are influenced most heavily by a decision tree that defines which parameter subsets
may be deleted from the monitored set. and when they may be deleted. There are also exceptions
that apply to deleting some parameter subsets with respect to criterion (A). This exception arises
because parameters with significant activity should not be eliminated from the monitored set
even if they are part of a predefined deletable subset. In contrast, the heuristically-defined sam-
pling rate alternative is entirely governed by the specific situation in which it is applied. In a
normal operating mode, the sampling rate can be reduced on all parameters that are not part of
the critical subset. In an anomaly detection mode, the sampling rate can only be reduced on
parameters that are irrelevant to anomaly detection. However, in the event of extreme backlogs,
reduction on sampling of all parameters may desirable. In these situations it is important to note
that if the minimal subset is not preserved, some loss of representativeness may result; domain
knowledge must be used to make timeliness vs. representativeness trade-off in these cases.

Occasionally parameters must be added irrespective of the affect on timeliness. This is because in
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A
N.O.M. (.45+/- 0.2)

NON-DYNAMIC BEHAVIOR . . . . . .

A.D.M. (.15 +/-0.1)

B
N.O.M. (0.0)

IRRELEVANCE TO AN -––_..._._._
EXISTING PROBLEM AREA A.D.M. (.60)

c N.O.M. (.15 +/- 0.2)
NON-NEGATIVE IMPACT ON ._.—
MONITORING INTEGRIW A.D.M. (.25 +/- 0.1)

(N.O.M. - Normal Operation Mode/ A. D. M.- Anomaly Detection Mode)

Figure 2. Attributes and weights for input reduction in the SS1 trade-off

anomaly detection mode, increased representativeness might take instant precedence, and pa-
rameters pertinent to diagnosing the detected anomaly must be added. With multiple anomalies,
more parameters may be needed. Subsequently, timeliness considerations may be applied, and
other parameters in the monitored set may be deleted. When the system returns to a normal op-
erating mode, the parameters relevant to a previously resolved anomaly may be removed from
the monitoring set if timeliness must be improved.

In the third step, relative weights are assigned to the attributes. Initial weights and variance
ranges for these weights are defined so the weights can be adjusted during the reasoning process.
This allows the weights to be adapted to accommodate changing circumstances in the monitored
environment. Weight variations are initiated when the system detects that its performance is de-
grading, and are implemented using rules that provide updates based on situational parameters.
This step also entails subjectively ranking each alternative in the context of each criterion at de-
sign time. The ranking is obtained with the help of the subsystem expert on a scale of O to 100,
with 100 having the maximum value, then checked for consistency. For example, alternative 2.1
obviously ranks the highest with regard to B, because the expert specifically designed this alter-
native not to impact parameters with relevance to an existing problem area. Alternative 1.1,
which removes the largest number of anomaly-related parameters, is perceived to be the poorest
choice with regard to criterion B. Conversely, when judged against criterion C, alternative 1.1 has
the highest ranking because the parameters that it removes generally are the first to be removed
and are only added back in small subsets in the event of anomalies.

Two sets of weights are defined for this application, as shown in Figure 2. The first set applies in
the normal operating mode and the second applies in an anomaly detection mode. In the normal
operating mode, the irrelevance of a parameter to an existing problem area is given no weight,
because no problems exist in this mode. However, in anomaly analysis mode, this attribute re-
ceives the most weight.

In the fourth step, the single-attribute alternative rankings and the attribute weights are aggre-
gated into an overall evaluation of alternatives which combines with the application-specific
domain knowledge to enable the selection of most valuable alternative for the given
circumstances. This step differs significantly from the comparable static step for two reasons.
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ALTERNATIVE NUMBER

1.1 1.2 2.1 2.2

Attribute Weight* Weight** Weight**’
A 0.15 0.25 0.05 75 90 30 40

B 0.6 0.6 0 20 30 90 50

c O. 25 0.15 0.35 100 75 40 25

~greaate  Value* (usinq wei.qht’) 48.25 49.75 68.5 42.25
Aggregate Value’* (using weight’”] 45.75 51.75 6 7 . 5 43.75.—— —.. —— .—— —

(using wieght””)
.——. —

Aggregate Value “** 50.75 ‘ - 48.75 69.5 33.25-.
● A.D.M. with no modification on starting weights

● * A.D.M. with weight modification for greater emphasis on environmental dynamics

● ** A.D.M. with weight modification for greater empahsis on overall monitoring integrity

Figure 3. Aggregate values of alternatives for varying weights in multiple anomaly mode.

First, circumstances dictate varying weights, which in turn dictate varying aggregations. Sec-
ondly, circumstances may vary the knowledge that is applied from situation to situation.
Examples of the varying aggregations that are obtained for both operating modes are shown in
the tables of Figure 3. These tables show that the data management actions that are most com-
patible with maintaining maximum representativeness are determined by external circumstances.
The ranking of the four alternatives with regard to representativeness value in varying circum-
stances is summarized in Figure 4, with 1 being the highest ranking.

The final step involves the selection of an alternative based on dynamic evaluation of the repre-
sentativeness vs. timeliness trade-off. In order to make this trade-off, the four alternatives must
also be evaluated with regard to timeliness. The timeliness impact of an alternative is directly
proportional to the percentage reduction (or increase) in the number of monitored parameters
that results from implementing that alternative. However, this percentage must be calculated
immediately prior to making the trade-off based on the parameters in the current set, because the
number of monitored parameters is a dynamic quantity determined by the events leading up to

‘3--$--3:”:
— ——..—.——.

ALTERNATIVE Elimination of than. not Elimination of than. not Sampling reduction Sampling reduction

MODE in basic subset in critical subset on heuristic subset on entira subset
——. .——-—. —

N.O.M. with no modification 1 2 3 4
—— —

N.O.M. with backlog modification 2 1 4 3
—. ———. —

N,O.M. with monitoring modification 1 2 3 4

A.D,M. with no modification 3 2 - 1 4.-
A.D.M. with backlog modification ‘ 3 2 1 4_—-— —
A.D.M.  withmoniloring modification 2 3 1 4

Figure 4. Rankings of alternative values with respect to representativeness.
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Representativeness Representmiveness

Figure 5. Timeliness vs. Representativeness for Galileo SS1 input data management. Figure
(a), at the left, shows the evaluation of the first trade-off in the example discussed in the text,
and Figure (b), at the right shows how the dynamics of the environment change after several
hypothetical anomalies are detected.

the current circumstances. The following example shows the dynamic and adaptive nature of this
evaluation.

Assume that the monitoring system has just been activated. Initially, all 49 parameters are in the
monitored set. After some time, the system detects a growing input backlog, and responds by
deciding that some parameters must be removed from the monitored set. No anomalies have
been detected as yet, and no modifications to the starting weights have been suggested by the
knowledge base. As a result, the system uses the aggregate values in the first line of Figure 3 as
representativeness values.

Timeliness values are obtained by calculating the net percentage reduction in input data. Alter-
native 1.1 eliminates parameters not in the minimal set, or 32 of the 49 parameters. Alternative 1.2
eliminates parameters not in the basic set, or 24 of the 49 parameters. These alternatives therefore
result in a 65% and a 50% reduction respectively. According to our rules, the reduced sampling
alternatives can eliminate 4 out of every 5 input values when no anomalies are present. Thus,
with alternative 2.1, we can eliminate 80% of a subset of the monitored set. This subset currently
consists of all parameters not in the basic set. A reduction of 80% is therefore possible on 24 of the
49 parameters. With alternative 2.2, we eliminate 80% of the sampling on the entire parameter set,
resulting in reductions of 507.  and 800/0 respectively. These reductions are plotted against the
aggregate representativeness value for each alternative as shown in Figure 5.9 (left). Both repre-
sentativeness  and timeliness are thus rated on a scale of 0-100 and traded off equally; 1 unit on the
representativeness scale is equivalent to 1 unit on the timeliness scale. The indifference curves
shown in the figure are created by this constant trade-off of units, alternatives lying on the same
indifference curve have equivalent value, and alternatives lying nearest to the upper right of the
graph are perceived as best. For this application, the alternatives in order of preference are 1.1,
1.2, 2.2 and 2.1. (Note that timeliness considerations have changed the order of preference from
that shown in Figure 4, which is based on representativeness alone.)

As a result of this analysis, alternative 1.1 is implemented. Our system is now monitoring only 17
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of the 49 parameters, and is achieving adequate throughput. Later, an anomaly appears on pa-
rameter 1910, which requires three additional parameters to be added. The anomaly is solved,
and at some later time, another anomaly appears on parameter 1881, requiring the addition of 12
more parameters.

We are now actively monitoring 32 parameters, and are building a backlog. The system’s backlog
detection module initiates metareasoning to reduce it. Figure 5 (right) shows there-evaluation in
response to the environmental changes at this point. The analysis proceeded as follows. Alterna-
tives 1.1 and 1.2 will allow only 3 parameters of the 32 parameters being monitored to be
eliminated. This is because 12 of the parameters pertain to the current anomaly and 17 belong to
the minimal set. Thus, both alternatives achieve a 9.3~0  reduction in input data. Alternative 2.1
reduces sampling on approximately 600/0 of the monitored parameters, but because we are in
anomaly detection mode, we only filter half of the input data from these parameters, achieving
an effective reduction of 307.. With alternative 2.2, we filter half of the input data on all 32 pa-
rameters fOr an effective reduction of 50y0.

These values are plotted against representativeness as shown in Figure 5. However, the selection
of an alternative is not as obvious as previously; alternatives 2.1 and 2.2 are very close to lying on
the same indifference curve. This provides an example of the use of domain heuristics in DTE:
there is no discernible difference in the value of alternatives 2.1 and 2.2 based on the indiffernece
curves alone. However, we can use domain knowledge, which indicates that in the current mode
(anomaly analysis), representativeness is a more important considerationthan timeliness (be-
cause access to all the information needed to solve the anomaly is more important than saving a
little bit of additional time). Thus domain knowledge is used as a tie breaker, and alternative 2.1
with its higher representativeness value, is selected. Eventually, the anomaly on parameter 1881
is resolved, and we return to the normal operation mode. Assuming no change in data rate, in this
mode a similar analysis will cause the system to return to its original choice of alternative 1.1, and
to continue fully monitoring only parameters in the basic subset. This example has shown the
effectiveness of combining utility analysis with domain knowledge to dynamically make real-
time trade-offs for intelligent data management. The example illustrates the dynamic nature of
the decision environment, and demonstrates the ability to use domain specific heuristics to guide
the trade-off process and achieve real-time metareasoning for run-time control.

5.2 A Focus vs. Responsiveness Trade-off
The primary goals of spacecraft mission operations are to design and issue command se-

quences necessary for enabling mission science goals, to verify correct execution of these
sequences, and to monitor health/status. Occasionally, sequence or health/status problems of
varying levels of severity are detected. When this occurs, the problems must be analyzed, diag-
nosed, and resolved as quickly as possible. Until recently, this has been a manually intensive and
tedious task.

Recent applications like MARVEL [Schwuttke et al. 1992] and other systems have made contri-
butions towards automated monitoring and diagnosis of complex systems. However, these
real-time systems have not addressed the focus vs. responsiveness trade-off pertaining to rea-
soning modules. In addition, they have not resolved the coordinated analysis of simultaneous
anomalies of varying criticality and interdependence. This system-level problem requires coor-
dination of two or more subsystem analysis processes, each of which may have
focus/responsiveness decisions.
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SOLVING STATUS M.A.M. (0.35 +/- .2)

(S. A.M.- Singlo Anomaly Mode/ M.A.M. - Multiple Anomaly Mode)

Figure 6. Attributes and weights for Voyager anomaly analysis trade-off

The problem domain for the focus vs. responsiveness trade-off is an environment in which te-
lemetry is monitored (compared to expectation for the purpose of detecting anomalies) by a
procedural software module. Anomalous data that is detected by the monitoring module is
passed to a knowledge-based system for analysis. The analysis process is significantly slower
than the monitoring process; as a result, when several anomalies occur within a very short period
of time, an unpredictable backlog can form at the analysis process. Dynamic trade-off evaluation
can be invoked to determine how to optimize reasoning in the presence of an anomaly backlog.
The relevant alternatives that must be evaluated for the focus vs. responsiveness trade-off include
1) manipulating duration or frequency of input scanning, 2) continuing to analyze the anomaIy
under investigation, 3) saving state and investigating a higher priority anomaly, and 4) aban-
doning state and investigating a higher priority anomaly. These alternatives will be evaluated
with respect to A) impact on timeliness, B) consistency with criticality, and C) consistency with
problem solving status. There are three possible problem solving status cases. These are Cl) that
the reasoning module is idle while waiting for additional input, C2) that the reasoning module
has almost completed its current reasoning task, or C3) that it has not yet neared completion of its
current reasoning task. In addition, there are three modes. These are the normal operations mode,
the single anomaly mode, and the multiple anomaly mode. However, the normal operation mode
reduces to a trivial alternative case, because there are no anomalies to analyze and the system can
focus exclusively on anomaly detection. As a result of this simplification, only the latter two
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modes need to be considered further. The modes and weights pertaining to these attributes are

ATTRIBUTE Cl ATTRIBUTE C2 AITRIBUTE  C3

ALTERNATIVE .-.--!!Z!!E?J’!!JYE.  -- -– . .-!! L!Z!?N..ATIVE

1
I

2 3 4 1 2 3 4 1 2 3 4

.AKribute  Weight* Weiqh~* Weight”*—.
A 0.2 0 0.4 70 40 30 10 70 40 30 10 70 40 30 10
B 0.45 0.45 0.45
c

40 50 60 70 40 50 60 70 40 50 60 70
0.35 0.55 0.15 60 10 70 55 40 80 70 10 20 30 40 60

AggregaIeYalue” 58.5- 57.5 37 _39 41 A7 54.5
Awfw~::, 65.5 61.75 40 66.5 65.s 37 29 39 27 fi’Lz

50.5 49.5 37 49 43 45 44.5

“M. A.M.. no modification on starting weights “’M.A.M. emphasis on problem status ‘“”M.A.M.  emphasis on timeliness

Figure 8. Aggregate values of alternatives in single (top) or multiple (bottom) anomaly mode.

shown in Figure 6. The table in Figure 7 shows the evaluation of the four alternatives with respect
to each attribute. Only one of the rows (C1-C3) pertaining to problem solving status is selected
when the trade-off evaluation is performed. This selection is made based on the actual status at
the time of the trade-off.

The aggregate rankings of the various alternative are obtained as they were in the example of the
previous section. Figure 8 shows the rankings for each of the anomaly modes, problem solving
statuses, and weights. Figure 9 summarizes the variation in alternative rankings based on re-
sponsiveness factors alone.

As in the previous example, the value associated with a particular alternative based cm only one
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Figure 9. Rankings of responsiveness alternatives with respect to mode.
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trade-off dimension (in this case representativeness) varies considerably with the circumstances
in the monitored environment. The table of Figure 9 shows that each of the 4 alternatives maybe
ranked in any position (1 through 4), depending on the dynamics of the situation.

6.0 IMPLEMENTATION AND TESTING OF DYNAMIC TRADE-OFF
EVALUATION
The DTE methods outlined in the previous section have been successfully applied to the

dynamic evaluation of the SS1 timeliness vs. representativeness trade-off. This section describes
the procedures used to evaluate the DTE mechanism, presents the results that have been ob-
tained, and provides a discussion of the results.

DTE has been designed and implemented as described in Section 5.2. The actual DTE algorithms
have been implemented separately from the domain knowledge required to perform application-
specific evaluation of trade-offs, so that the DTE modules can be reused in future applications.
This will only require the specification and addition of alternatives, evaluation attributes,
weights, and rules that are needed by the specific applications.

The purpose of this implementation has been to explore the validity of the approach. Data re-
duction of approximately 67°/0 was expected to be achievable with the DTE method in the SS1
application domain, because the minimal monitoring set as defined in the domain knowledge is
approximately one third of the total parameter set. (When the number of parameters drops below
the minimal monitoring set, some loss of monitoring integrity is expected.)

6.1. Experimental Design
Data from Galileo’s first earth encounter was archived for use in developing the moni-

toring, analysis and DTE modules that will be required for an operational system. Initially, we
had planned to use this data in its original form for testing DTE’s performance. However, the
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anomaly density from this short encounter was too low to provide adequate representation of the
broad range of operational conditions that are expected in the future. Therefore, the DTE module
has been tested with randomly generated anomaly files that are composed as shown in Figure 10.

The test files were generated from a base of 16 sample data slices. Each slice contains one sample
from each of the 49 SS1 telemetry lines, paralleling the arrival of data in an operational system. A
single telemetry line sample is composed of a parameter number, a time tag, a parameter mne-
monic, and a data value. An anomaly consists of one or more telemetry lines in which the data
values differ from predictions. Fifteen of the sample slices contain actual anomalies that have
occurred in the past; these have been supplied by JI’L’s imaging-subsystem expert. The sixteenth
slice contains no anomalous data.

The 16 data slices were used as building blocks by a software program that was implemented to
automatically generate randomized test files. Each test file is composed of 8,000 lines of telemetry
data, or 160 slices. Most of the slices in a test file are replications of the single anomaly-free te-
lemetry slice. The test files are randomly seeded with selections from the 15 anomalous data
slices, in varying anomaly densities. The selected densities include OYO, 30/., 50/., 10%, 15%, 20?/.,
and 30°/0. These densities were chosen to provide evaluation of the DTE methods across the com-
plete range of possible anomaly densities in foreseeable missions, in order to enable insight into
applications and situations for which DTE is most successful. For each of the selected anomaly
densities, 3 different test files were generated. The entire set of test files was then used to supply
data to DTE and two other data management approaches. The other approaches include random
data elimination and incremental filtering. These methods provide a means for comparing DTE
to previously available approaches. Random data elimination may appear to be an unusual
choice. However, it is the method that most closely parallels the approach actually used by many
human analysts in data-overload situations: when their data backlog becomes too large, they skip
over the data in the backlog, and focus on the newly arriving data. Incremental filtering, on the
other hand, involves less loss of information. Data is filtered at according to f = n/b (when n<b),
where f is the fraction of sampIes  passed through the filter, n is the total number of parameter
types, and b is the number of samples in the backlog.

The backlog accrues according to the ratio of the incoming data rate to real-time processing rate.
(For example, with a backlog accrual of x, data is arriving x times faster than it can be processed.)
Each of the three methods were evaluated with respect to performance under increasing backlog
accrual. Two performance criteria are identified: percentage of anomalies successfully detected
and percentage of data processed that is needed for correctly diagnosing anomalies. The latter
data is referred to as anomaly-relevant data and includes both the anomalies and the information
related to solving the anomaly. Successful detection of an anomaly involves perceiving the anom-
aly within four slices of its occurrence.

6 . 2 .  E x p e r i m e n t a l  R e s u l t s

The experimental results were evaluated with respect to average percentage of anomalies suc-
cessfully detected under increasing input data volumes and increasing anomaly density and also
with respect to anomaly-relevant information that is processed under increasing input data vol-
umes and increasing anomaly density. The first of these evaluation criteria is important with
respect to automated monitoring, and the second is relevant to automated anomaly analysis.

Anomaly detection using DTE is highly successful for data rates as high as 2.5 times the real-time
monitoring capability, particularly at anomaly densities of 10% or less. In these operating ranges,
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DTE outperforms both random data elimination and incremental filtering, detecting over 90% of
all anomalies within 4 data slices of their occurrence. The success of anomaly detection with
random data elimination and incremental filtering, on the other hand, drops below 50~0 at back-
log accrual rates as low as 1.5.

Processing of anomaly-relevant information involves passing parameters relevant to the analysis
of a detected anomaly from the data management module to the monitoring and analysis
module. If anomaly-relevant parameters are being filtered by the data management module,
some of the information needed for analysis will be lost, Intelligent data management with DTE
is most successful at low (57. or lower) anomaly densities with backlog accrual rates that exceed
real-time processing capabilities by as much as 2.5. Within these operational parameters, pro-
cessing of anomaly-relevant information is as high as 95~0 for backlog accrual rates equal to twice
the processing capability, 80% for backlog accrual rates equal to 2.5 times the processing capa-
bility, and 707.  for backlog accrual rates equal to three times the processing capability. At these
backlog accrual rates, the other two methods provide no more than 70Y0, 50Y0, and 509’. of anom-
aly relevant data, respectively.

6.3. Discussion
Three important characteristics of intelligent data management systems have been iden-

tified [Washington and Hayes-Roth 1989].
● The system should be responsive to changing resource requirements. For example,

the amount of data sampled should vary with the computational load placed on
the system.

● The system should be responsive to important and unusual events in the input
data, even when it is “busy”.

● The system should be able to focus its attention on parameters that are particularly
relevant to the current reasoning task,

The Galileo SS1 application has shown that DTE provides an effective way to achieve each of
these criteria, not only for the data addressed by Washington that is monitored based on known
limits, but also for dynamic data types that do not occur in his application.

DTE enables both anomaly detection and anomaly diagnosis for low anomaly densities and
moderate backlog accrual rates. Actual anomaly densities for this application average less than
3~o, which is well within the acceptable operational parameters of the method.

Both Figures 11 and 12 show performance degradation in the DTE method beginning at backlog
accrual rates that exceed real-time processing capability by a factor greater than three. Further-
more, when the backlog accrual rates exceed processing rates by a factor of four or more, the DTE
method begins to converge with the other two methods. This performance degradation is inher-
ent in the domain. The minimal monitoring set for complete anomaly detection (as defined by the
domain expert) consists of 17 parameters, or one third of the entire parameter set. When all of
these 17 parameters are not monitored, some loss of monitoring integrity will occur, as is dem-
onstrated by degradation of the DTE method at backlog accrual rates of 3.5 or more.

Subsequent testing shows that with an imaginary domain, in which the minimal set can be de-
fined as a significantly smaller subset of the total parameter subset, the effective increase in data
reduction that can be achieved is on the same order as the decrease in size of the minimal set.
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A long-term solution to this problem in the context of a specific domain involves designing te-
lemetry (or other input data) definition to later enable maximum data reduction. The more
hierarchically the monitored data can be structured, the more the size of the minimal data set can
be reduced. However, this type of telemetry design requires monitoring needs to be explicitly
considered during spacecraft (or other system) design. As monitoring applications continue to
increase in complexity, such an approach would involve significant monitoring benefits in the
form of reduced automation and monitoring workforce costs.

The observed performance degradations at known data reduction ratios can be used to enable the
system to predict its own failure and provide warnings when its monitoring integrity will be
reduced. For example, when the system detects that it has reduced its monitoring coverage below
the minimal data subset it can, as a minimum, notify human analysts of possible reductions in
monitoring integrity. In a distributed environment, a module that can predict its own failure to
meet real-time constraints could actually go so far as to request additional processing resources
from the environment.

The significance of the observed improvements in anomaly detection and intelligent data man-
agement varies with the significance of the anomaly. An actual SS1 anomaly that occurred within
the past year provides effective illustration of this point. In this anomaly, the SS1 camera contin-
ued shattering (taking pictures) for 16 hours longer than expected. There was no automated
monitoring capability to detect this problem, so it went undetected for several hours. When fi-
nally discovered by an analyst, it was not detected at its origin but in one of its symptoms. As a
result, the diagnosis of the problem first headed down a false path, adding additional hours of
analysis beyond what would have been required if the problem had been detected at its origin.
According to subsystem experts, an automated monitoring capability would have saved 3 hours
of discovery and 5 hours of analysis, exactly one half of the sixteen hour process that was re-
quired in the absence of automated monitoring. An automated analysis capability, or even an
intelligent data management scheme that presented relevant. data to the analyst in an organized
fashion, could have saved even more analysis time.

The significance of this savings is considerable. The total lifetime of the camera is 150,000 shut-
ters, of which 40,000 were expended prior to launch. Of the remaining 110,000 shutters, 1000 were
wasted as a result of this anomaly. With an automated data management and monitoring capa-
bility, at least 500 of these shutters, or almost ..5~o  of the life of the camera would have been saved.
The value of the possible science return of the additional photographs cannot easily be
quantified. However, this example effectively illustrates the fact that any improvement in auto-
mated monitoring and analysis can prove to be highly significant in the face of unanticipated
future anomalies.

CONCLUSIONS
Dynamic Trade-off Evaluation has been shown to be an effective technique that offers

significant benefit to real-time AI systems. DTE incorporates a mix of knowledge-based and
utility-theoretic techniques and is particularlyvaluable  in real-time monitoring situations of mod-
erate anomaly densities, varying data rates, and dynamic decision criteria. In experimental
evaluations, DTE significantly outperforms other commonly-used approaches to manage real-
time monitoring data trade-offs in increasing-backlog situations. Moreover, DTE is a generic
technique that can be effectively applied in many kinds of trade-off analysis for real-time systems
We have designed a generic architecture for DTE applications, treated elsewhere [Schwuttke
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1991a], and have taken initial steps to implement DTE as an operational part of the MARVEL
intelligent monitoring system [Schwuttke et al. 1991; Schwuttke et al, 1992] in use at JPL.

A C K N O W L E D G E M E N T

The research described in this paper was carried out by the Jet Propulsion Laboratory,
California Institute of Technology under a contract with the National Aeronautics and Space
Administration.

REFERENCES
Baird, J. C. and Noms, E. 1978. “Fundamentals of Scaling and Psychophysics.” New York; Wiley
Publishers.

D’Ambrosio, B. 1990. “Constrained Rational Agents.” IEEE Transactions on Systems, Man, and
Cybernetics.

Dean, T. 1990. “Decision-Theoretical Control of Inference for Time-Critical Applications.”
Technical Report  CS-90-44,  Brown University Dept. of Computer Science, Providence, Rhode
I s l a n d .

Dyer, S. and Sarin,
search, 22, 810-822.

Edwards, W. 1977.

R. A. 1979. “Measurable Multi-attribute Value Functions.” Operations Re-

“ HOW to Use Multi-attribute Utility Measurement for Social Decision
Making.” IEEE Transactions on Systems, Man and Cybernetics, SMC-7, 326-40.

Edwards, W. and Newman, J. R. 1982. “Multi-attribute Evaluation.” Beverly Hills, CA: Sage
Publishers.

Feldman, J. A. and Sproull, R. F. 1977. “Decision Theory and Artificial Intelligence II: The Hungry
Monkey.” Cognitive Science 1,158-192.

Gardiner, P. 1974. “The Application of Decision Technology and Monte Carlo Simulation to
Multiple Objective Public Policy Decision Making: A Case study in California Coastal Zone
Management.” Unpublished Doctoral Dissertation, University of Southern California, Los
Angeles.

Hansson, O. and Mayer, A. 1990. “Probabilistic Heuristic Estimates.” Annals of Mathematics and
Artificial Intelligence, 2:209-220.

Hayes-Roth, Barbara. 1990. “Architectural Foundations for Real-time Performance.” Real-lime
Systems, May 1990.

Horvitz,  E, J. 1988a, “Reasoning Under Varying and Uncertain Resource Constraints.” Proceed-
ings of the National Conference on Artficial lnt.dligence, Minneapolis, MN August 1988.



22

Horvitz E. J.; Breese, J. S, and Henrion, M. 1988b. “Decision Theory in Expert Systems and Arti-
ficial Intelligence.” Intern fltional Journal Of Approximate Reasoning, Special Issue on Uncertain
Reasoning: 247-302.

Keeney, R. L. and Sicherman, A. 1976, “An Interactive Computer Program for Assessing and
Using Multi-attribute Utility Functions.” Behavioral Science, 21, 173-182.

O’Reilly, C.A. and Cromarty, A.S. 1985. “ ‘Fast’ is not ‘Real-time’: Designing Effective Real-time
AI Systems.” Applications of Artificial Intelligence II, SPIE 548,249-257.

Russell, S. J. and Wefald, E. H. 1989. “On Optimal Game-Tree Search Using Rational Metarea-
soning, “ International Joint Conference on Artificial Intelligence, Detroit, Michigan, 334-340.

Schwuttke, U. M.; Quan, A. and Gasser, L. 1991. “Improved Real-time Performance in Automat-
ed Monitoring Using Multiple Cooperating Expert Systems” Proceedings of 4th International
Conference on Industrial and En~”neering  Applications of Al and Expert Systems, June 1991.

Schwuttke,  U. M. 1991a. “Intelligent Real-time Monitoring of Complex Systems.” Ph.D. disser-
tation, Dept. of Electrical Engineering, University of Southern California.

Schwuttke,  U. M.; Quan, A. G.; Angelino R.; et al. 1992. “MARVEL: A Distributed Real-time
Monitoring and Analysis Application,” In Innovative Applications of Artificial Intelligence 4, eds. P.
Klahr and C. Scott. Boston: MIT Press.

Simon, H. A. 1955. “A Behavioral Model of Rational Choice.” Quart.]. Econ., 69,99-118.

Torgenson, W. S. 1958. “Theory and Methods of Scaling.” New York: Wiley Publishers.

von Winterfeld, D. and Edwards, W. 1986. “Decision Analysis and Behavioral Research.” Cam-
bridge University Press.

Washington, R. and Hayes-Roth, B. 1989. “Input Data Management in Real-time AI Systems.”
Eleventh International Joint Conference in Artificial Intelligence. Detroit, Michigan.


